ORCA5 upgrade

As we’re upgrading the ExoGENI infrastructure to the new release of ORCA (5.0 Eastsound), there are a few things experimenters should know about the features and capabilities of this new release.

The main feature being added is the so called state recovery, or the ability to restart the various ORCA actors and retain the state about created slices. This will allow experimenters to run long-lived experiments without concerns about the interference of software updates or some other disruptive events. The recovery handles many situations, although catastrophic events may still result in the loss of slice information.

Another area of attention for us has been bare-metal node provisioning – we have strengthened the code that performs bare-metal provisioning, making it more error-proof and also added the ability to attach iSCSI storage volumes to bare-metal nodes. This capability until now has only worked for virtual machine slivers.

ORCA5 has allowed us to enable hybrid mode support in the rack switches, which in simple terms means those experimenters that care to use the OpenFlow capabilities of the switch, can do that, while the rest can use traditional VLANs, with more predictable performance guarantees.

Finally, we introduced the ability to see the boot consoles of VMs in case of failure, a feature we hope will help in debugging stubborn image creation issues.

Known issues:

  • Attachment to mesoscale VLANs
    • Won’t work properly with current NDL converter
    • Doesn’t work due to yet to be determined problems with switch hybrid configuration – packets don’t pass properly between OpenFlow and VLAN parts of the switch.
  • NDL conversion for some slice manifests may not work properly. Slices may appear disconnected. This requires an update to the NDL converter, which will be done once more racks are upgraded.

US Ignite recognizes researchers from NC State and RENCI for innovative app for monitoring power grids

Researchers from NCSU FREEDM center and RENCI took home an award  for best application in the energy and sustainability sector at a US Ignite Application Summit.

The demonstration involved an ExoGENI hardware-in-the loop slice that included laboratory infrastructure using multiple PMUs integrated with a Real-time Digital Simulator (RTDS),which are housed at the FREEDM Systems Center, dynamically linked to ExoGENI compute resources using BEN experimental network.

For more information visit RENCI website.